Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
Journal of chemical crystallography ; : 1-14, 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-2284816

RESUMO

The new compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 4-hydroxyproline with 4-nitrobenzenesulfonyl chloride. The compound was characterized using single crystal X-ray diffraction studies. Spectroscopic methods including NMR, FTIR, ES-MS, and UV were employed for further structural analysis of the synthesized compound. The title compound was found to have crystallized in an orthorhombic crystal system with space group P212121. The S1-N1 bond length of 1.628 (2) Å was a strong indication of the formation of the title compound. The absence of characteristic downfield 1H NMR peak of pyrrolidine ring and the presence of S–N stretching vibration at 857.82 cm−1 on the FTIR are strong indications for the formation of the sulfonamide. The experimental study was complemented with computations at the B3LYP/6-311G +  + (d,p) level of theory to gain more understanding of interactions in the compound at the molecular level. Noncovalent interaction, Hirsfeld surface analysis and interaction energy calculations were employed in the analysis of the supramolecular architecture of the compound. Predicted ADMET parameters, awarded suitable bioavailability credentials, while the molecular docking study indicated that the compound enchants promising inhibition prospects against dihydropteroate synthase, DNA topoisomerase, and SARS-CoV-2 spike. Graphical Abstract Herein we present the solid state structure, noncovalent interaction and spectroscopic analysis of a prospective bioactive compound 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid. Supplementary Information The online version contains supplementary material available at 10.1007/s10870-023-00978-0.

2.
J Chem Crystallogr ; : 1-14, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: covidwho-2284817

RESUMO

The new compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 4-hydroxyproline with 4-nitrobenzenesulfonyl chloride. The compound was characterized using single crystal X-ray diffraction studies. Spectroscopic methods including NMR, FTIR, ES-MS, and UV were employed for further structural analysis of the synthesized compound. The title compound was found to have crystallized in an orthorhombic crystal system with space group P212121. The S1-N1 bond length of 1.628 (2) Å was a strong indication of the formation of the title compound. The absence of characteristic downfield 1H NMR peak of pyrrolidine ring and the presence of S-N stretching vibration at 857.82 cm-1 on the FTIR are strong indications for the formation of the sulfonamide. The experimental study was complemented with computations at the B3LYP/6-311G + + (d,p) level of theory to gain more understanding of interactions in the compound at the molecular level. Noncovalent interaction, Hirsfeld surface analysis and interaction energy calculations were employed in the analysis of the supramolecular architecture of the compound. Predicted ADMET parameters, awarded suitable bioavailability credentials, while the molecular docking study indicated that the compound enchants promising inhibition prospects against dihydropteroate synthase, DNA topoisomerase, and SARS-CoV-2 spike. Graphical Abstract: Herein we present the solid state structure, noncovalent interaction and spectroscopic analysis of a prospective bioactive compound 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid. Supplementary Information: The online version contains supplementary material available at 10.1007/s10870-023-00978-0.

3.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2099665

RESUMO

Synthesis of sulfonamide through an indirect method that avoids contamination of the product with no need for purification has been carried out using the indirect process. Here, we report the synthesis of a novel sulfonamide compound, ({4-nitrophenyl}sulfonyl)tryptophan (DNSPA) from 4-nitrobenzenesulphonylchloride and L-tryptophan precursors. The slow evaporation method was used to form single crystals of the named compound from methanolic solution. The compound was characterized by X-ray crystallographic analysis and spectroscopic methods (NMR, IR, mass spectrometry, and UV-vis). The sulfonamide N-H NMR signal at 8.07-8.09 ppm and S-N stretching vibration at 931 cm-1 indicate the formation of the target compound. The compound crystallized in the monoclinic crystal system and P21 space group with four molecules of the compound in the asymmetric unit. Molecular aggregation in the crystal structure revealed a 12-molecule aggregate synthon sustained by O-H⋯O hydrogen bonds and stabilised by N-H⋯O intermolecular contacts. Experimental studies were complemented by DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The computed structural and spectroscopic data are in good agreement with those obtained experimentally. The energies of interactions between the units making up the molecule were calculated. Molecular docking studies showed that DNSPA has a binding energy of -6.37 kcal/mol for E. coli DNA gyrase (5MMN) and -6.35 kcal/mol for COVID-19 main protease (6LU7).


Assuntos
COVID-19 , Triptofano , Humanos , Teoria Quântica , Modelos Moleculares , Simulação de Acoplamento Molecular , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA